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Abstract
Purpose Lung biopsy is currently the most effective procedure for cancer diagnosis. However, respiration-induced location
uncertainty presents a challenge in precise lung biopsy. To reduce themedical image requirements formotionmodelling, in this
study, local lung motion information in the region of interest (ROI) is extracted from whole chest computed tomography (CT)
and CT-fluoroscopy scans to predict the motion of potentially cancerous tissue and important vessels during the model-driven
lung biopsy process.
Methods The motion prior of the ROI was generated via a sparse linear combination of a subset of motion information
from a respiratory motion repository, and a weighted sparse-based statistical model was used to preserve the local respiratory
motion details. We also employed a motion prior-based registration method to improve the motion estimation accuracy in
the ROI and designed adaptive variable coefficients to interactively weigh the relative influence of the prior knowledge and
image intensity information during the registration process.
Results The proposed method was applied to ten test subjects for the estimation of the respiratory motion field. The quanti-
tative analysis resulted in a mean target registration error of 1.5 (0.8) mm and an average symmetric surface distance of 1.4
(0.6) mm.
Conclusions The proposed method shows remarkable advantages over traditional methods in preserving local motion details
and reducing the estimation error in the ROI. These results also provide a benchmark for lung respiratory motion modelling
in the literature.

Keywords Statistical respiratory motion model · Weighted sparse algorithm · Motion prior-based registration · Computed
tomography
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Introduction

Lung biopsy is typically required for a definitive diagnosis
of potential cancer; however, the problem of organ motion
caused by respiration leads to position uncertainty in the lung,
thus greatly degrading the success rate of lung biopsy [1].
Moreover, it has recently been shown that the geometry of
significant blood vessels in the lung will result in clinically
significant internal bleeding if such vessels are punctured
[2]. It is therefore crucial to be able to accurately predict the
respiratory motion of the region of interest (ROI), such as the
tumour and nearby vessel structures.

Many tracking strategies, including both image- and
model-driven approaches, are currently used in clinical
biopsy practice. Image-driven approaches rely on a vari-
ety of intra-interventional imaging techniques, such as X-ray
fluoroscopy, magnetic resonance imaging (MRI), computed
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Fig. 1 Example of a sectional CTF scan of a tumour region

tomography (CT) andCT-fluoroscopy (CTF), for tumour and
ROI tracking [3]. However, real-time X-ray fluoroscopy pro-
vides only a 2D projective image and has low image contrast
in lung tissue. MRI scans are not always feasible in clinical
practice due to their high cost and complex procedure. By
contrast, volumetric CT scans can produce high-quality 3D
images and arewidely applied in clinical settings. CTF scans,
which can generate a limited number of 2D axial images in
the superior–inferior (SI) direction, are often employed to
guide percutaneous lung interventions (see Fig. 1). However,
in traditional CT- and CTF-guided lung biopsy, physicians
must frequently capture medical images to modify the posi-
tioning of the biopsy needle, whichmay result in unnecessary
radiation exposure for both patients and physicians. Com-
pared to the image-guided strategy, model-driven biopsy
approaches can effectively avoid this additional scan dose
during lung intervention because only surrogate signals need
to be acquired to drive the model for motion predication dur-
ing clinical lung intervention. One of the possible workflows
for applying this approach to the clinical lung biopsy is pro-
posed in our previous work [4]: a reference needle is first
positioned in the region near the ROI by a thoracic surgeon
before the operation. The location of the reference needle,
which is used as the surrogate signal to drive the motion
model to predict the tumour position, can be determined in
medical images. Then, CT image pairs are acquired at differ-
ent breathing phases to extract the deformation vector fields
(DVFs) for motion modelling, and the coordinate system of
the motion model is aligned to the real operation space based
on skin markers. During the biopsy process, the real location
of the reference needle can be tracked by an electromagnetic
navigator. The aligned motion model is used to determine
the current breathing phase by simulating a similar location
of the reference needle with its real location, and predict the
motion information associated with the tumour and ROI.

Image registration-based methods and statistical methods
are promising techniques for handling the motion predic-
tion task. Traditionally, image registration-basedmethods are
performed by minimizing the intensity information between
image pairs consisting of fixed and floating medical images
to extract DVFs that describe the temporal change in the
position of interest. Although many machine learning-based
methods for 2D–2D, 2D–3D and 3D–3D image registration

have been proposed in recent years [5, 6], it is a challenging
task to registerCTF imageswithCT images to directly extract
motion information. To overcome the problem of regular reg-
istration, Su et al. [3] proposed a fast CT–CTF registration
algorithm with respiratory motion compensation. However,
the proposed registration framework limited the displace-
ment of the control point in the SI direction,which introduced
unnecessary estimation error. In addition, the need for two
preprocedural CT scans resulted in additional radiation expo-
sure and costs.

However, the registration of different-size image pairs
with large deformations remains a challenging task. In con-
trast, a statistical motion model is formed on the basis
of motion data acquired from training images that can be
adapted for the prediction of patient-specific motion with a
reduced need for additional imaging data. Such a model can
also serve as a motion prior during the traditional registration
process to reduce deformation between intermediate CT and
CTF images to improve the accuracy of registration [3]. For
the construction of such a model, the DVFs of several 4D
image datasets are extracted using nonlinear intensity-based
registrationmethods. In most studies, these models are based
on a principal component analysis (PCA).An exception is the
work conducted by Ehrhardt et al. [7], who used a statistical
4D mean motion model (MMM) to estimate lung respira-
torymotion based on the assumption that breathing dynamics
are similar for different patients. However, this assumption
is unrealistic because the motion patterns of different sub-
jects typically differ [8, 9]. In the PCA-based modelling
approach, a set of volumetric images captured in different
breathing phases is used to extract DVFs, and new volumet-
ric images are reconstructed based on the reference images
by varying a few eigenvectors and coefficients. Ha et al. [10]
introduced a dense patient-specific motion model by per-
forming a PCA of the estimated displacement fields with
a unified discrete optimization framework. Similarly, Samei
et al. [11] proposed the use of exemplar population models to
generate an adaptable population model for the prediction of
liver motion based on a PCA and 4D motion fields obtained
from several 4D MRI datasets. Instead of predicting respira-
tory motion based on either a PCA subject-specific model
or a PCA population model, this method considered the
dissimilarity among three manually determined points and
the corresponding components of each PCA subject-specific
model to formulate weight coefficients. Finally, the motion
vectors of the manually determined points were approxi-
mately represented by a linear combination of the exemplar
models.However, the discarded eigenvectors in a PCAmodel
are statistically nonsignificant and often contain important
local motion details [12]. The sparse representation method
proposes a potential approach to lung segmentation [13] and
motion analyses [14–16]. In our previous work, we proposed
a lung motion prediction framework based on a sparse repre-
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sentation method using two orthogonal X-ray images and
a pre-operative CT [15, 16]. The DVFs of several image
datasets are first extracted to construct a respiratory motion
repository (see “Data preparation” section for more details).
The respiratory motion of a new input patient can be rep-
resented as a linear combination of DVFs in this motion
respiratory with a set of sparse coefficients based on the
sparse representationmethod, and the sparse coefficients will
be optimized by maximizing the image similarity between
the X-ray images and the projection image of the deformed
CT, which were generated based on the pre-operative CT
with the motion information. However, the X-ray image pro-
vides only a 2D projective image and has low image contrast
in lung tissue, thus may fail to clearly visualize the internal
lung structure and lead to the modelling method achieved an
unstable motion prediction performance of the entire lung,
especially for the vessel structures. In addition, since the
motion patterns of different types of respiration typically
differ, the motion information of training DVFs has a wide
range of variation. A potential problem associated with the
traditional sparse algorithm-basedmethod [13–16] is that the
respiratory motion information for the new input patient is
probably formulated with a training DVF that represents a
different motion pattern from the new input one, and thus
may also influence the motion prediction accuracy.

To overcome this issue, we introduce a motion prediction
framework for model-driven lung biopsies in which prepro-
cedural whole chest CT and intraprocedural CTF images
acquired at different time points are used to extract motion
information in the ROI rather than the X-ray images. The
major contributions include the following. (1) A weighted
sparse algorithm-based statistical motion modelling method
is proposed. This method can automatically generate more
discriminative sparse weights and composite several training
DVFs that have similar motion information with new input
specific to the patient to provide a more robust and accurate
motion predication than the traditional sparse algorithm-
basedmethod [13–16]. (2) Combined with the prior informa-
tion, a motion prior-based registration method is designed to
improve the prediction accuracy in the ROI. In addition, an
adaptive variable coefficient approach is designed to balance
the influence of the prior knowledge with that of the image
intensity information during the registration process.

Materials andmethods

A flow diagram of the proposed motion modelling frame-
work is shown in Fig. 2. The patient-specific DVFs used for
the training datasets, which are extracted using a nonlinear
registration method, are employed to construct the respi-
ratory motion repository (DVFs) for the proposed motion
modelling method. The mapping matrix ϕ1→p from the CT

images ICT,1 of Subject 1 to the images ICT,p of Subject p
(p � 2, 3, . . . , n) is generated based on a registration
method (see “Data preparation” section for more details). In
“Weighted sparse algorithm-based statistical motion model”
section, given the EI CT (ICT, j ) and EE CTF images from
a new input Patient j , the mapping matrix ϕ j→1 is gen-
erated using a registration method for warping the images
ICT,j onto the EI CT reference images ICT,1 in the training
datasets. Subsequently, an automatic segmentation method
is employed to generate the lung vessel surface SCT, j and
SCTF, j of Patient j . Combined with the mapping matrix
ϕ j→1 and ϕ1→p, the corresponding position of SCT, j can be
determined in the pth training image region and is denoted
as S′

CT,p. Thus, the corresponding respiratory motion M will
be generated with the resulting DVFs. The weighted sparse
algorithm-based statistical motion modelling method is then
applied to obtain a unique set of sparse weight coefficients,
thus generating a patient-specific DVF for the current patient
to describe the motion of the tissue in the lung. Finally, an
accurate localmotionmodel of theROI is generated using the
prior motion information via themotion prior-based registra-
tion method (“Motion prior-based registration with adaptive
variable coefficients” section).

Data preparation

In this study, a motion repository was constructed from CT
training datasets acquired from 26 training subjects during
the EE and EI phases. Nine subjects exhibited diaphrag-
matic respiration, and the remaining subjects exhibited some
thoracic-related respiration behaviour. The spatial resolu-
tion of each volumetric image was 0.912 × 0.912 × 1.25
mm with a spatial resolution of 512 × 512 × 256 voxels.
All datasets were acquired at Peking Union Medical Col-
lege Hospital. The CT image coordinate system of different
subjects was transformed into a common coordinate sys-
tem by alignment of the vertebral bodies. Given a set of
aligned training CT image pairs, a nonparametric discrete
registration method [17] was employed to extract the DVF
information from the aligned EI to EE CT images. Thus, the
construction of themotion repository can be presented as fol-
lows: DVFs � [DVF1,DVF2, . . . ,DVFn], where the DVF
of Subject p is denoted as DVFp (p � 1, 2, . . . , n), and
n � 26 is the number of training subjects in the lung motion
repository.

Weighted sparse algorithm-based statistical motion
model

For the construction of a respiratory motion model, an auto-
matic segmentationmethod [18] is first employed to segment
the lung vessel from the new input EI CT image ICT, j and
EE CTF image ICTF, j of Patient j . Let SCT, j and SCTF, j
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Fig. 2 Framework of lung respiratory motion estimation based on EI CT images and EE CT images

Fig. 3 Overview of the generation of corresponding surface points for
the new input of Patient j. a First, a registration method is employed
to compute the transformations ϕ j→1 and ϕ1→p for warping the image

ICT, j to reference image ICT,1 and image ICT,p of Subject p. b The
corresponding surface points of the lung surface of Patient j are deter-
mined based on these resulting transformations and SCT, j

denote the vessel surface in the EI CT and EE CTF images,
respectively.We then randomly select a reference image from
among the training datasets. For instance, suppose that the
CT image ICT,1 of Subject 1 is chosen as the reference
image. The transformation ϕ j→1 between the image ICT, j of
Patient j and the reference image ICT,1 can be generated
using the registration method [17], as shown in Fig. 3a. In

Fig. 3b, the transformation ϕ j→1 was used to transform the
surface points on SCT, j to their corresponding points S′

CT,1
in ICT,1: S′

CT,1 � ϕ j→1(SCT, j ). Similarly, the corresponding
points S′

CT,p of the surface points S′
CT,1 can be determined

in the image region of Subject p by using the transforma-
tion ϕ1→p between the reference image ICT,1 and the image
ICT,p of Subject p as S′

CT,p � ϕ1→p(S′
CT,1).
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The motion information M � [m1,m2, . . . ,mn] ∈ �k×n

is then generated from the S′
CT,p using the correspond-

ing DVFs (“Data preparation” section). Each column of
M is a vector representing the motion of k points of sur-
face S′

CT,p. The modelling method aims to find a deformed
vessel tree surface SCT, j +Mμ that is close to the target sur-
face SCTF, j by seeking the appropriate sparse weights μ �
[
μ1, μ2, . . . , μn

]T ∈ �n×1. The deformation of all surface
points on the SCT, j can be represented as Mμ, which indi-
cates a linear combination of the motion of surface points in
M . However, the resulting transformations ϕ j→1 and ϕ1→p

will inevitably introduce errors that will influence the loca-
tions of the corresponding surface points S′

CT,1 and S′
CT,p.

To alleviate this problem, we explicitly model this error of k
surface points as a sparse vector e ∈ �k×1. The optimization
function of the modelling method is formulated as follows:

argmin
μ,e

fe
(
SCTF, j , SCT, j + Mμ − e

)
+ λ1‖μ‖1 + λ2‖e‖1,

(1)

(2)

fe
(
SCTF, j , SCT, j + Mμ − e

)

� 1

t

t∑

z�1

min
szCTF, j∈SCTF, j

∥∥∥szCTF, j − (
SCT, j + Mμ − e

)∥∥∥,

where the symbols λ1 and λ2 are predefined sparsity numbers
that control the sparseness of μ and e. fe is the similarity
energy used to measure the shortest Euclidean distance from
the zth surface point (szCTF, j ) on the target surface SCTF, j

to the closest point on the deformed surface SCT, j + Mμ −
e, and the symbol t indicates the number of surface points
on SCTF, j . Furthermore, we employ a normalized diagonal
matrix, W � diag[w1, . . . , wn] ∈ �n×n , to characterize the
similarity of internal motion between the new input patient
and each training subject.

argmin
μ,e

fe
(
SCTF, j , SCT, j + Mμ − e

)
+ λ1‖Wμ‖1 + λ2‖e‖1,

(3)

W � diag
([

fe(SCTF, j , SCT, j + α1m1), . . . , fe(SCTF, j , SCT, j + αpm p), . . . , fe(SCTF, j , SCT, j + αnmn)
])

max
(
fe(SCTF, j , SCT, j + α1m1), . . . , fe(SCTF, j , SCT, j + αpm p), . . . , fe(SCTF, j , SCT, j + αnmn)

) . (4)

The vessel surface motion amplitude of each training sub-
ject Subject p is controlled by the parameter αp to eliminate
the influence of the individual depth of respiration. The value
of αp can be computed before solving the objective function.
If the resulting value of wp is small, the DVF of Subject p
will be considered to have a similar breath pattern and will
be chosen preferentially to present the DVF of the new input
patient Patient j . The solution for μ in Eq. 3 is equivalent

to W−1μ̂, where μ̂ is calculated using the following opti-
mization function:

(5)

argmin
μ̂,e

fe
(
SCTF, j , SCT, j + MW−1μ̂ − e

)

+ λ1
∥∥μ̂

∥∥
1 + λ2 ‖e‖1 .

This optimization problem can be solved using the fast
iterative shrinkage-thresholding algorithm (FISTA) [19]. The
basic statistical respiratory motion model formulation can be
used to approximately represent the respiratory motion field
DVF j (xi ) of any new input patient as a weighted linear com-
bination of the fields in the motion repository, DVFp(xi ), as
follows: DVF j (x) � ∑n

p�1 DVFp(x) · μ̂p, where x denotes
a voxel in the image space. We further optimize the weight
coefficients μ̂ based on the image similarity energy, which
measures the region of overlap between the new inputs ICT, j

and ICTF, j . Therefore, the influence of the inter-registration
error will be further eliminated.

argmax
μ̂

Sim

⎡

⎣ICTF, j , ICT, j

⎛

⎝x +
n∑

p�1

DVFp(x) · μ̂p

⎞

⎠

⎤

⎦,

(6)

where Sim represents the normalized mutual information
similarity between the target CTF image ICTF, j and the

deformed CT image ICT, j

(
x +

∑n
p�1 DVFp(x) · μ̂p

)
under

the current deformation
∑n

p�1 DVFp(x) · μ̂p. The optimal

sparse weight coefficients μ̂ � [
μ̂1, μ̂2, . . . , μ̂n

]T ∈ �n×1

can be obtained via the gradient descent method with one of
the nonzero weight coefficients as variable and the others as
fixed. Thus, the deformation field DVF j (x) of the new input
data can be approximately reconstructed used as the motion
prior gprior(x) in the motion prior-based registration process.

gprior(x) � DVF j (x) �
n∑

p�1

DVFp(x) · μ̂p. (7)
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Motion prior-based registration with adaptive
variable coefficients

The motion prior gprior(x) is employed to generate a
deformed CT image ICT, j

(
x + gprior(x)

)
to reduce the defor-

mation between the source CT image ICT, j and the CTF
image ICTF, j of a new patient j . An iterative refinement pro-
cess is implemented to improve the prediction accuracy in
the ROI by minimizing the following objective function:

arg min
μ∗
p,g(x)

∑

x∈Ω

⎡

⎣ICTF, j − ICT, j

⎛

⎝x +
n∑

p�1

DVFp(x) · μ∗
p + g(x)

⎞

⎠

⎤

⎦

2

+
∑

x∈Ω

g
(
xSI

)2
, (8)

where x denotes a voxel in the image spaceΩ , g(x) is the dis-
placement of the deformation field obtained throughB-spline
registration and g(xSI) represents the displacement g(x) in
the superior–inferior (SI) direction. The initial sparseweights
μ̂ of the motion prior gprior(x) are first further fine tuned to
seek the optimal weights μ∗ by best matching the deformed

CT image ICT, j

(
x +

∑n
p�1 DVFp(x) · μ∗

p + g(x)
)
with the

reference image ICTF, j , where g(x) � 0 in the first iterative
process. Subsequently, the displacement g(x) of the deforma-
tion field between the reference images ICTF, j and deformed

CT image ICT, j

(
x +

∑n
p�1 DVFp(x) · μ∗

p + g(x)
)
with the

resulting value μ∗ is computed via image registration. Since
CTF scans can be regarded as a limited number of 2D axial
images in the SI direction and provide full coverage of the
image region in the other two directions, the displacement
g(x) near the boundary of CTF images along the SI direction
should be regularized by using

∑
x∈Ω g(xSI)2.

During the above iterative process, the weights μ∗ are
employed to obtain more suitable motion prior information
to improve the accuracy of the motion prediction near the
boundary of the CTF images. Then, an appropriate value
g(x) can providemotion information that is lost in the weight
sparse model. The final motion information of Patient j
can be presented as follows:

∑n
p�1 DVFp(x) · μ∗

p + g(x).
Notably, both

∑n
p�1 DVFp(x) · μ∗

p and g(x) represent the
deformation field in the 3D CT image space and can be
directly added. In the B-spline registrationmethod, each con-
trol node influences only a subregion of the image. We can
design a set of adaptive variable coefficients to provide a
suitable penalty in the following function:

arg min
μ∗
p,g(x)

∑

x∈Ω

(
1 − ξIC

)
⎡

⎣ICTF, j − ICT, j

⎛

⎝x +
n∑

p�1

DVFp(x) · μ∗
p + g(x)

⎞

⎠

⎤

⎦

2

+ ξIC

∑

x∈Ω

g
(
xSI

)2
, (9)

where ξIC is a set of adaptive variable coefficients, with
ξk�(RCT,k − RCTF,k)

/
RCT,k for the kth control node, where

RCT,k and RCTF,k are the regions influenced by the kth node
in the whole chest CT image and in the CTF image, respec-
tively. If the region of influence of the kth control node lies
outside the partial EE image, ξk � 1. Thus, themotion of this
control node can be determined only from the prior informa-
tion, and the final displacement in the SI direction is zero.
Alternatively, if the influenced region exists entirely within
the CTF image, ξk � 0, and the registration result is deter-

mined only by the intensity difference of the overlap between
the two images in this region. Because the CTF and CT scan
images are given, ξIC will be determined before the regis-
tration process. Note that the value of g(x) is related to the
displacement of the control nodes and can be extracted from
the deformation field, which is generated based on the B-
spline registration algorithm and can be optimized by using
the gradient descent method.

Results

Evaluation of the weighted sparse algorithm-based
lung respiratory motionmodel

In the following study, the sectional CT scan from the EE
phase was used to simulate the CTF image. For the weighted
sparse model, the weighting parameters λ1 and λ2 in Eq. 5
are determined on 26 training subjects using the leave-one-
out strategy. First, the initial value of λ2 is held at 0 while
the parameter λ1 is optimized based on the gradient descent
method. The value of λ1 is then held back to seek the suitable
parameter λ2 which was employed to produce an appropriate
value of λ1 in the next iterative optimization process. There-
fore, the best values of the parametersλ1 andλ2 are iteratively
tuned. The optimization process was repeated until the vari-
ation in the average TRE value of all training subsets is less
than 0.05 mm or the maximum number of iterations was met
(set to 30). To demonstrate the sensitivity of the parameters,

the variation of the average target registration error (TRE)
with these parameters is shown in Fig. 4. The result shows
that the model formulation method is weakly sensitive when

123



International Journal of Computer Assisted Radiology and Surgery (2020) 15:1279–1290 1285

Fig. 4 The effect of the
parameters on the average TRE
for the training subsets

Table 1 Sample characteristics of datasets for each case

Data set Breath type Tidal volume (ml) Average motion of
landmark (mm)

01 Diaphragmatic 102.7 8.2

02 Diaphragmatic 131.4 9.6

03 Diaphragmatic 207.5 14.7

04 Thoracic 139.5 10.5

05 Thoracic 117.6 9.1

06 Thoracic 199.3 14.8

07 Thoracic 195.3 13.7

08 Thoracic 172.5 11.8

09 Mixed 194.6 14.3

10 Mixed 90.9 7.3

λ1 is approximately 2–7 and λ2 is between 0.1 and 0.4. We
use λ1 � 4.5 and λ2 � 0.2 throughout our work because
these values achieved the best TRE.

In this study, we collected data from10 additional test sub-
jects not included in the repository to evaluate the weighted
sparse modelling method, as shown in Table 1. We com-
pared the whole lung motion fields extracted using three
state-of-the-art statistical lung motion model methods and
the weighted sparse modelling method. The three methods
considered for comparison are summarized as follows:

Method I MMM [7]. An average motion field was com-
puted based on the motion fields extracted from the 26
training subjects (the details of these subjects can be found in
“Data preparation” section) and was employed to deform the
floating EI CT image. A scaling factor was used to control
the amplitude of the average motion field. The optimal value
of this scaling factor was optimally determined by minimiz-
ing the intensity difference between the deformed CT image
and the reference CTF image in the CTF image space.

Method II PCA model [10]. The resulting DVFs for 26
training subjects form a matrix, where each column repre-
sents the whole DVF field for a corresponding subject. The
traditional PCA was then performed on this matrix to calcu-
late the eigenvectors and eigenvalues. A new displacement
field was reconstructed by varying the PCA coefficient, with
the objective of solving a deformation field to align the new
input ICT, j to ICTF, j . The PCA coefficients were optimized
basedon the image similarity in the regionof overlap between
the deformed ICT, j and ICTF, j . We tested the effect of differ-
ent numbers of principal components. The mean TRE values
of the PCA method constructed by the first one (retained
85.2% variance), first two (retained 92.5% variance), first
three (retained 95.4% variance), first four (retained 97.1%
variance) and all PCA components were 2.9 mm, 3.0 mm,
2.7 mm, 2.8 mm and 3.4 mm, respectively. Furthermore, an
improved PCA model, which achieved the best prediction
accuracy (mean TRE � 2.6 mm), was formulated by penal-
izing the weights of all principal components and using the
same L1 norm relaxation in Eq. 1.

Method III Exemplar populationmodel [11]. For the train-
ing data used here, 4D CT datasets were acquired from 10
volunteers under free breathing. Ten phases were observed
for each subject. For each test subject, approximately 100
landmarkswere determined on theEICT image using a semi-
automatic tool [20], and the bifurcation points of the vessel
were manually chosen. A registration method was applied
to warp the EI CT image from each test subject onto the
training CT images from each breathing phase. Then, the
resultant deformation field was used to map the landmarks
to their corresponding points in the training images to build
the subject-specific PCAmodel. The population PCAmodel
was constructed on all 4D CT data of all training subjects.
Three of the landmarks for each test subject were used as the
surrogates to calculate a series of weights based on the simi-
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Fig. 5 Visualization of the computed intrasubject DVFs for three random subjects (one subject per row) between the EE and EI phases. The
magnitude of the respiratory motion field is visualized and colour coded in millimetres (mm)

Table 2 TRE in mm of each method using manual expert landmarks

Dataset Intrasubject registration Method I Method II Method III Method IV Weighted sparse model
(without e term)

Weighted sparse model
(with e term)

01 1.2 (0.6) 4.8 (2.0) 2.4(1.1) 2.4 (1.0) 2.1 (1.0) 2.2 (1.1) 2.1 (0.9)

02 1.6 (0.8) 4.4 (2.1) 2.8 (1.0) 2.6 (1.2) 2.3 (1.0) 2.3 (1.0) 2.2 (1.0)

03 1.8 (1.2) 4.8 (2.5) 3.0 (1.6) 2.8 (1.5) 2.6 (1.4) 2.7 (1.4) 2.5 (1.3)

04 1.7 (0.9) 5.4 (2.6) 2.9 (1.3) 2.8 (1.3) 2.7 (1.1) 2.6 (1.2) 2.5 (1.0)

05 1.3 (0.6) 4.4 (2.4) 2.5 (1.1) 2.5 (1.1) 2.2 (1.0) 2.2 (1.0) 2.0 (1.0)

06 1.9 (1.3) 4.5 (2.9) 3.0 (1.6) 2.9 (1.6) 2.4 (1.5) 2.6 (1.5) 2.4 (1.4)

07 1.8 (1.0) 6.2 (3.9) 2.9 (1.4) 2.8 (1.5) 2.6 (1.4) 2.7 (1.6) 2.5 (1.4)

08 1.6 (0.8) 5.9 (3.6) 2.9 (1.4) 2.7 (1.2) 2.6 (1.1) 2.4 (1.2) 2.4 (1.0)

09 1.1 (0.6) 6.4 (3.6) 2.3 (1.2) 2.1 (1.1) 2.1 (1.0) 2.0 (1.0) 1.9 (0.9)

10 1.3 (0.9) 3.7 (2.0) 2.6 (1.3) 2.4 (1.1) 2.0 (1.0) 2.1 (1.2) 2.0 (0.9)

Mean 1.5 (0.9) 5.0 (2.4) 2.6 (1.4) 2.6 (1.3) 2.4 (1.2) 2.4 (1.2) 2.2 (1.1)

larity of the surrogate and the corresponding model. Finally,
a weighted combination of all examples was formulated to
predict the motion field.

Method IV Traditional sparse model. This model is con-
structed based on Eq. 1, and the resulting values of the sparse
weights were optimized based on function (6).

Figure 5 presents a visual comparison of the results for
first three test subjects. Notably, the result of the intrasub-
ject registration [17] was calculated based on reference EE
CT images and floating EI CT images and was employed
as the ground truth for visual illustration of the motion pre-
diction of the statistical motion model. Because the motion
repository contained information on multiple types of res-
piration and only nine diaphragmatic respiration samples,
Method I failed to accurately predict the motion information,
as visualized in the second column of Fig. 5. In most lung
regions, Method II, Method III and the proposed weighted

sparse model recovered accurate deformation information.
However, there was some local deformation information loss
(white curves), as shown in the third and fourth columns of
Fig. 5. For the three selected subjects, the weighted sparse
modelling method achieved more accurate DVF information
than the PCAmethod. Approximately 100 landmark pairs in
the EE and EI CT images covering the whole lung region
were manually obtained to evaluate the respiratory motion
estimates. In Table 2, we list the average and standard devi-
ation of the TRE [21] of these landmarks for the 10 test
subjects and compare the motion prediction result achieved
by the weight sparse model with and without the e term
in Eq. 5. Note that the proposed weighted sparse motion
model has less error compared with the other model meth-
ods. Compared with the traditional sparse model (Method
IV), the proposed weighted sparse model employs a normal-
ized diagonal matrix to prejudge the similarity between the

123



International Journal of Computer Assisted Radiology and Surgery (2020) 15:1279–1290 1287

Fig. 6 Results of CT image registration: a CTF, b inhale CT, c weighted sparse model-based registration, d fast CT–CTF registration and e motion
prior-based registration. The bottom row shows an overlay of the CTF (magenta) and deformed CT (green) images

Table 3 Comparison of the ASSD (mm) and TRE (mm) results for the vessel tree surface

Dataset Weighted sparse model Fast CT–CTF registration Motion prior-based registration

TRE ASSD TRE ASSD TRE ASSD

01 2.2 (1.2) 3.1 (1.5) 1.8 (0.9) 2.1 (1.1) 1.5 (0.4) 1.0 (0.5)

02 2.3 (1.3) 3.3 (1.4) 2.0 (0.9) 2.2 (1.2) 1.5 (0.7) 1.0 (0.7)

03 2.4 (1.2) 4.4 (1.9) 2.5 (1.3) 2.9 (1.9) 1.7 (1.0) 1.8 (0.8)

04 2.6 (1.2) 3.3 (1.5) 2.5 (1.2) 2.3 (1.1) 1.7 (0.8) 1.4 (0.6)

05 2.2 (1.4) 3.0 (1.5) 1.8 (0.9) 2.5 (1.2) 1.5 (0.7) 1.3 (0.6)

06 2.7 (1.6) 3.4 (1.7) 2.2 (1.2) 3.1 (1.2) 1.8 (0.8) 1.6 (0.6)

07 2.3 (1.5) 3.5 (1.9) 2.2 (1.3) 2.9 (1.4) 1.6 (1.0) 1.6 (0.5)

08 2.4 (1.1) 3.2 (1.7) 2.3 (1.0) 2.2 (1.3) 1.7 (0.6) 1.5 (0.7)

09 2.3 (1.3) 4.1 (2.2) 1.6 (1.0) 2.3 (1.7) 1.0 (0.7) 1.6 (0.6)

10 2.0 (1.0) 2.5 (1.5) 1.7 (0.9) 1.8 (0.8) 1.4 (0.8) 1.0 (0.6)

Mean 2.4 (1.3) 3.4 (1.7) 2.1 (1.2) 2.5 (1.2) 1.5 (0.8) 1.4 (0.6)

motion information of the new input patient and that of the
training DVFs. Therefore, the weighted sparse model can
more easily eliminate the influence of a dissimilar training
DVF and achieve a better result (mean TRE � 2.2 mm) than
the traditional model (mean TRE � 2.4 mm). The paired t
test results showed that the proposed weighted sparse model
with the e term is better than the four comparison methods
and the proposed method without the e term in terms of the
TRE metric (p value <0.05), respectively.

Evaluation of motion prior-based registration
with adaptive variable coefficients

In this section, 15–20 landmark pairs in the CTF region
were manually determined for each testing subject to evalu-

ate the registration results between EI CT and simulated EE
CTF images. We compared the performance of the weighted
sparse model, fast CT–CTF registration with motion com-
pensation [3], to that of the motion prior-based registration
method throughout the CTF image volume, as shown in
Fig. 6. For this comparison, the intermediate CT images
proposed in [3] were generated by warping the floating EI
CT images using the deformation field generated with the
weighted sparse model. The average symmetric surface dis-
tance (ASSD) [22] of the vessel model and the TRE of
the landmark pairs were used to quantitatively evaluate the
final respiratory motion estimation results in the lung region
contained by the CTF image (see Table 3). The proposed
registration approach showinggreater accuracy than the com-
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Table 4 Mean landmark motion (mm) and mean TRE (mm) of the proposed motion prediction framework

Phase 1 2 3 4 5 6 7 8 9

Mean landmark motion 1.2 (1.1) 2.2 (2.3) 3.1 (3.3) 4.2 (4.1) 5.3 (4.8) 7.6 (6.9) 8.3 (7.5) 9.6 (8.1) 11.1 (9.5)

Mean TRE 0.2 (0.1) 0.4 (0.2) 0.5 (0.3) 0.7 (0.3) 0.8 (0.5) 1.1 (0.6) 1.2 (0.6) 1.3 (0.7) 1.6 (0.7)

parison approach (mean TRE � 1.6 mm, mean ASSD �
1.4 mm and p value <0.05).

Evaluation of the proposedmotionmodel for 4D CT
datasets

In clinical applications, motion estimates throughout the res-
piratory cycle are required. In this section, 4D CT image data
from 10 subjects were employed to validate the proposed
method at different time points throughout the breathing
cycle. Each 4D CT dataset consisted of ten breathing phases.
The CT scan from the EI phase was used as the floating CT
image, and the sectional CT scan from the EE phase was
used to simulate the CTF image (reference image). Thus, the
proposedmethod can predict the respiratorymotion based on
the EI CT and EE CTF image pairs. The remaining breathing
phases were employed to evaluate the accuracy of the motion
model.

The locations of one landmark point in each intermedi-
ate CT images were employed to simulate the motion of the
reference needle and used to drive the motion model. Since
the location of this landmark is known in each intermediate
CT image, the motion model can compute a similar loca-
tion of this landmark, and the breathing time point can be
determined. Then, the predicted locations of the remaining
landmarks at this breath state were compared with their real
locations in corresponding CT images. As listed in Table 4,
the maximum TRE value was 1.6 (0.7) mm (with ≈ 20
landmark pairs) and occurred between the maximum inhale
and the maximum exhale. The TRE usually increased by ≤
1.4 mm with increasing magnitude of the landmark motion.

Discussion and Conclusions

In this study, we present a novel motion modelling tech-
nique based on a whole chest CT scan and a CTF scan of
the ROI to construct a patient-specific local lung respira-
tory motion model for model-driven biopsies. The weighted
sparse motion model, which is used to obtain the motion
prior for the registration process, performs well in preserv-
ing detailed local motion information. We also introduce
a motion prior-based registration method with adaptive
weighting coefficients to address the error of the statistical
motionmodel in theROI by considering the relative influence

of prior knowledge and image intensity information during
the registration process.

Compared to previous work [10, 11], the weighted sparse
model can provide more accurate motion prediction results.
According to our experimental comparison, when the rele-
vant local motion information is contained in only a minority
of the training subjects in the motion repository, the res-
piratory motion estimates obtained using Method I are
unsatisfactory. The PCA model constructed with the first
several components can effectively reduce the inaccuracy
in the deformation field of the training subjects, resulting
in superior results (mean TRE<3.0 mm) compared with the
model with all PCA components (mean TRE � 3.4 mm)
[23]. In addition, the results showed that the resulting pre-
diction accuracy was improved by approximately 0.1 mm
compared with that of the PCA model with the first three
components when we added the same L1 norm term to the
traditional PCAmethod. The main reason is that this method
can adaptively determine the optimal number of principal
components for each specific testing subject. However, PCA
derives a set of orthonormal bases (principle components) of
the subspace bymaximizing their variability, where the com-
ponents are ranked in descending order of the variation in the
training dataset. Imposing sparse constraints on all principal
components tends to identify a compact subset to adequately
reconstruct the original sample. The first several principal
components would be included in the selected subset despite
the sparse constraint. This approach degenerates to the clas-
sical PCA and achieves a performance inferior to that of the
proposed method due to the loss of local motion details in
the discarded PCA components.

In [24, 25], the optimal PCA weights were computed by
optimizing an objective function of the image registration,
such as theNMI similaritymetric employed in [24].A similar
strategy adopted in Eq. 6 is employed to achieve the optimal
sparse weights to formulate the statistical motion model in
the proposed work. Furthermore, the proposed motion prior-
based registration is used to improve the prediction accuracy
of the ROI throughout the CTF image region. Although the
CT–CTF registration task has been accomplished in a previ-
ous work [3], the proposed motion prior-based registration
method has two advantages. First, the proposed method can
be applied to a single CT image and an CTF image to com-
plete the motion modelling task instead of requiring two CT
scans and one CTF scan. Second, the regularization term∑

xi∈Ω g(xSI)2 in function (9) is flexible by virtue of the
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proposed adaptive variable coefficients. The deformation of
a control point is varied depending on whether the affected
region is within the CTF region.

During the treatment, the motion model should deal with
themotion variability, such as intra- and inter-breathing cycle
variability. In “Evaluation of the proposed motion model for
4D CT datasets” section, 4D CT images were employed to
evaluate the performance of the proposed motion prediction
method for hysteresis in lung motion introduced by intra-
cycle variability. The motion model was generated based on
EI CT and EE CTF images and was driven by one of the
landmark points to present the motion of the ROI at different
time points throughout the inter-breathing cycle. The result
indicated that the accuracy is sufficient for clinical percuta-
neous lung intervention, since it has been reported that an
average TRE of less than 3.3 mm is sufficient for accom-
plishing the intervention task [3]. In addition, we proposed a
clinical operation framework based on a lung motion model,
an electromagnetic navigator and a pair of needles for per-
cutaneous biopsy in our previous study [4]. Following this
framework, the hysteresis phenomenon in the target region
can be simulated based on the motion of a prepositioned ref-
erence needle as tracked by the electromagnetic navigator.
Although the above framework can also alleviate the influ-
ence of inter-cycle variability, the motion model constructed
fromonly twobreath phases is not enough. To solve this prob-
lem, we aim to search for large amounts of 4D CT images
in the future to formulate the motion model and analyse how
themotion representation is related to surrogate signals, such
as the motion of diaphragm positions and the body surface.

Although we employed an e term to solve the effect of
the error introduced by the transformations ϕ j→1 and ϕ1→p

in Eq. 1, this error may still be a main factor influencing the
motion prediction performance. Instead of randomly choos-
ing an image from the training dataset, a common intensity
atlasmaybe a feasibleway to address registration error.How-
ever, we need to solve the inverse transformation problem [7]
after employing this atlas, which is an issue of focus in image
registration algorithms because this task is usually subjected
to inverse consistency error [26]. In future work, we plan to
develop a suitable image atlas generation method and an effi-
cient inverse consistency registration method to enhance the
robustness of the proposed method with respect to noise.
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